- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Busch, Pablo (2)
-
Cheng, Katherine (2)
-
Ziotopoulou, Katerina (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The abundance of post-earthquake data from the Canterbury, New Zealand (NZ), area can be leveraged for exploring machine learning (ML) opportunities for geotechnical earthquake engineering. Herein, random forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric classification model that can also calculate global feature importance post-model building. The results and procedure are presented of building a multiclass liquefaction manifestation classification RF model with features engineered to preserve special relationships. The RF model hyperparameters are optimized with a two-step fivefold crossvalidation grid search to avoid overfitting. The overall model accuracy is 96% over six ordinal categories predicting over the Canterbury earthquake sequence measurements from 2010, 2011, and 2016. The resultant RF model can serve as a blueprint for incorporation of other sources of physical data such as geological maps to widen the bounds of model usability.more » « less
-
Cheng, Katherine; Busch, Pablo; Ziotopoulou, Katerina (, Japanese Geotechnical Society Special Publication)The abundant post-earthquake data from the Canterbury, New Zealand (NZ) area is poised for use with machine learning (ML) to further advance our ability to better predict and understand the effects of liquefaction. Liquefaction manifestation is one of the identifiable effects of liquefaction, a nonlinear phenomenon that is still not well understood. ML algorithms are often termed as “black-box” models that have little to no explainability for the resultant predictions, making them difficult for use in practice. With the SHapley Additive exPlanations (SHAP) algorithm wrapper, mathematically backed explanations can be fit to the model to track input feature influences on the final prediction. In this paper, Random Forest (RF) is chosen as the ML model to be utilized as it is a powerful non-parametric classification model, then SHAP is applied to calculate explanations for the predictions at a global and local feature scale. The RF model hyperparameters are optimized with a two-step grid search and a five-fold cross-validation to avoid overfitting. The overall model accuracy is 71% over six ordinal categories predicting the Canterbury Earthquake Sequence measurements from 2010, 2011, and 2016. Insights from the SHAP application onto the RF model include the influences of PGA, GWT depths, and SBTs for each ordinal class prediction. This preliminary exploration using SHAP can pave the way for both reinforcing the performance of current ML models by comparing to previous knowledge and using it as a discovery tool for identifying which research areas are pertinent to unlocking more understanding of liquefaction mechanics.more » « less
An official website of the United States government
